Logarithms Practice Quit Solutions
(a) Consider the graph of the exponential function
$$f(x) = -3$$

(b) Exercise the characteristic of the function, with respective the domain Range, intercepts, and asymptote(s).
 $D_{13} = 0$
(b) State the domain, range, intercept, and asymptote for the intercept of the domain Range, intercept, and asymptote for the intercept of the solution of $y = -3$ ((y, A_1))
(c) Determine the equation of the inverse function.
 $T = y = 2^{-1} - 3$
(c) Determine the equation of the inverse function.
 $T = y = -3^{-1} - 3^{-1} + 3^{-1}$

$$\begin{array}{c} (a) \ \log_{12}24 - \log_{12}6 + \log_{22}364 + 3 (\log_{9}g_{\pm}^{2}(2q_{\pm}^{2}(4q_{2}^{2}(4$$

9. If log 3 = P and log 5 = Q, write an algebraic expression in terms of P and Q for each:

(a)
$$log 15 = log (3 \cdot 5)$$

 $\frac{1}{2} = (og 3 + log 5)$
 $= P + Q$
10. If $log x = 4$, evaluate:
(a) $log(100x)$
 $= (og 100 + log x)$
 $(b) log(\frac{\sqrt{x}}{1000}) = log \sqrt{x} - log (000)$
 $= log x'/2 - log (000)$
 $= log x'/2 - log (000)$
 $= log x'/2 - log (000)$
 $= \frac{1}{2} log x - log (000)$

11. Solve each equation algebraically. $x = 9^{3x+4} = 4x^{-9}$

(a)
$$8^{3x+4} = 4^{x-3}$$

 $(2^3)^{3x+4} = (2^2)^{x-9}$
 $2^{9x+(2)} = 2^{2x-(8)}$
 $9x+(2) = 2x-(8)$
 $7x = -6/7$
(b) $\log_2 x - \log_2 3 = 5$
 $16g_2 \frac{x}{3} = 5$
 $2^5 = \frac{x}{3}$
 $x = 32 \cdot 3$
 $x = 96$

10